Chemical Biology

Synthetic compounds designed to potently and selectively interact with specific biomolecules have served as powerful tools for establishing biological function, and for many biomolecular targets, have resulted in important, life-saving therapeutic agents. The Ellman lab has continually sought to leverage synthetic chemistry to address important biomedical problems. In fact, the design, high throughput/combinatorial synthesis, and testing of drug-like small molecules was the first set of projects to be carried out by the Ellman group, including demonstrating this approach for the first time for nonpolymeric molecules as implemented for the privileged benzodiazepine framework as well as early examples of library design using structure-based docking of virtual libraries with Tack Kuntz (UCSF).

Enzymes are proteins that catalyze a majority of the chemical transformations required by living organisms and as such they play central roles in virtually all biological processes. Enzyme inhibition also provides a powerful approach for the treatment of disease. In collaboration with Charly Craik (UCSF), the Ellman lab developed positional scanning protease substrate profiling methods to rapidly determine preferred cleavage sequences for proteases, enzymes that hydrolyze amide bonds in peptides and proteins. This information can facilitate the identification of natural protease substrates to establish their biological roles and can aid in the design of potent and selective inhibitors. The methods developed with Craik have now been applied to hundreds of proteases by numerous academic and industrial labs.

Due to the rapidity and reliability by which substrate cleavage efficiency can be obtained, the Ellman lab developed a substrate-based fragment identification and optimization approach for small molecule enzyme inhibitor discovery. We first developed the approach as a platform for protease inhibitor discovery and applied it to the identification of potent and selective inhibitors to a number of therapeutically relevant proteases. For example, the Ellman group used the approach to develop highly potent and selective inhibitors of cathepsin S such as 1 (Figure 1A), which is implicated in autoimmune disorders and cancer.  Indeed, due to the potency and selectivity of inhibitor 1, it served as the starting point for further drug development by Boehringer Ingelheim, and in collaboration with Matt Bogyo at Stanford, provided the key binding motif for near-infrared activity-based-probes for imaging cathepsin S activity in vivo. Potent, selective and orally available inhibitors such as have also been developed against cruzain (Figure 1B), which is an essential protease of Trypanosoma cruzi and is the causative agent of Chagas’ disease. We have also developed the substrate-based fragment approach for the discovery of small molecule inhibitors to other enzyme classes, including protein tyrosine phosphatases and protein arginine deiminases.

Figure 1. Potent and selective protease inhibitors identified by substrate-based fragment identification and optimization

The depth and breadth of cutting edge research at Yale School of Medicine provides many exciting opportunities for collaboration. As one example, we collaborated with Angus Nairn and Paul Lombroso along with researchers at AZN to identify nanomolar, selective inhibitors of striatal enriched protein tyrosine phosphatase, implicated in neurological disorders, including Alzheimer’s disease (Figure 2), with Ya Ha (Yale Pharmacology) on the structure-based design of potent and selective lipid kinase inhibitors implicated in cancer, and with Anton Bennett, Elias Lolis and Karen Anderson (Yale Pharmacology) on the structure-based design of selective allosteric inhibitors of MKP5, a protein tyrosine phosphatase implicated in diseases such as muscular dystrophy.

Figure 2X-ray crystal structures of striatal enriched protein tyrosine phosphatase inhibitors

In collaboration with Brian Shoichet and John Irwin (UCSF) we have generated a virtual library of billions of diverse, druglike non-aromatic nitrogen heterocycles from commercially available inputs based upon C-H functionalization reaction cascades developed by the lab (see C-H Functionalization research section). Through an iterative process of docking, structure-based design, and medicinal chemistry, we have identified potent, selective and pharmacologically active molecules to important therapeutic targets. In one example recently published in Nature, we identified potent and selective 5HT2AR agonists that are differentiated from all previously reported 5HT2AR agonists due to their long-acting anti-depressive effects in mouse models, importantly, without eliciting undesired psychedelic effects.

Relevant Publications

Wang, X.; Choe, Y.; Craik, C. S.; Ellman, J. A.
Design and Synthesis of Novel Inhibitors of Gelatinase B
Bioorg. Med. Chem. Lett.  200212, 2201-2204.  
Kehoe, J. W.; Maly, D. J.; Verdugo, D. E.; Armstrong, J. I.; Cook, B. N.; Ouyang, Y.-B.; Moore, K. L.; Ellman, J. A.; Bertozzi, C. R.
Tyrosylprotein Sulfotransferase Inhibitors Generated by Combinatorial Target-Guided ligand Assembly
Bioorg. Med. Chem. Lett  200212, 329-332.  
Maly, D. J.; Leonetti, F.; Backes, B. J.; Dauber, D. S.; Harris, J. L.; Craik, C. S.; Ellman, J. A.
Expedient Solid-Phase Synthesis of Fluorogenic Protease Substrates Using the 7-Amino-4-Carbamoylmethylcoumarin (ACC) Fluorophore
J. Org. Chem.  200267, 910-915.  
Maly, D. J.; Huang, L.; Ellman, J. A.
Combinatorial Strategies for Targeting Protein Families.  Application to the Proteases
ChemBioChem  20023, 16-37.  
Huang, L.; Lee, A.; Ellman, J. A.
Identification of Potent and Selective Mechanism-Based Inhibitors of the Cysteine Protease Cruzain Using Solid-Phase Parallel Synthesis
J. Med. Chem.  200245, 676-684.  
Dauber, D. S.; Ziermann, R. Parkin, N.; Maly, D. J.; Mahrus, S.; Harris, J. L.; Ellman, J. A.; Petropoulos, C.; Craik, C. S.
Altered Substrate Specificity of Drug-Resistant Human Immunodeficiency Virus Type 1 Protease
J. Virol.  200276, 1359-1368.  
Lee. A.; Ellman, J. A.
Parallel Solution-Phase Synthesis of Mechanism-Based Cysteine Protease Inhibitors
Org. Lett.  20013, 3707-3709.  
Souers, A. J.; Ellman, J. A.
beta-Turn Mimetic Library Synthesis: Scaffolds and Applications
Tetrahedron  200157, 7431-7448.  
Harris, J. L.; Niles, A.; Burdick, K.; Maffitt, M.; Backes, B. J.; Ellman, J. A.; Kuntz, I.; Haak-Frendscho, M.; Craik, C. S.
Definition of the Extended Substrate Specificity Determinants for beta-Tryptases I and II
J. Biol. Chem.  2001276, 34941-34947.  
Backes, B. J.; Harris, J. L.; Leonetti, F.; Ellman, J. A.; Craik, C.
Rapid and General Profiling of Protease Specificity by Using Combinatorial Fluorogenic Substrate Libraries
Proc. Natl. Acad. Sci.  200097, 7754-7759.  
Souers, A. J.; Rosenquist, A.; Jarvie, E. M.; Ladlow, M.; Fenuik, W.; Ellman, J. A.
Optimization of a Somatostatin Mimetic via Constrained Amino Acid and Backbone Incorporation
Bioorg. Med. Chem. Lett.  200010, 2731-2733.  
Bi, X.; Lin, B. Haque, T.; Lee, C. E.; Skillman, A. G.; Kuntz, I. D.; Ellman, J. A.; Lynch, G.
Novel Cathepsin D Inhibitors Block the Formation of Hyperphosphorylated Tau Fragments in Hippocampus
J. Neurochem.  200074,  1469-1477.  
Maly, D. J.; Choong, I. C.; Ellman, J. A.
Combinatorial Target-Guided Ligand Assembly.  Identification of Potent, Sub-type Selective c-Src Inhibitors
Proc. Natl. Acad. Sci.  200065, 1222-1224.  
Backes, B. J.; Harris, J. L.; Leonetti, F.; Craik, C.; Ellman, J. A.
Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin
Nat. Biotechnol.  200018, 187-194.  
Shin, Y.; Winans, K. A.; Backes, B. J.; Kent, S. B. H.; Ellman, J. A.; Bertozzi, C. R.
Fmoc-Based Synthesis of Peptide-Thioesters: Application to the Total Chemical Synthesis of a Glycoprotein by Native Chemical Ligation
J. Am. Chem. Soc.  1999121, 11684-11689.  
Lee, A.; Huang, L.; Ellman, J. A.
General Solid-phase Method for the Preparation of Mechanism-Based Cysteine Protease Inhibitors
J. Am. Chem. Soc.  1999121, 9907-9914.  
Dragoli, D. R.; Ellman, J. A.
Parallel Solid-Phase Synthesis of Prostaglandin E Analogs
J. Comb. Chem.  19991, 534-539.  
Haskell-Leuvano, C.; Souers, A. J.; Rosenquist, A., Ellman, J. A.; Cone, R. D.
Identification of Agonists at the Human Melanocortin Receptor MC1R By the Evaluation of a Library of Small Molecules Based upon the b-Turn
J. Med. Chem.  199942, 4380-4387.  
Ramdas, L.; Bunin, B. A.; Plunkett, M. J.; Sun, G.; Ellman, J. A.; Gallick, G.; Budde, R. J. A.
Benzodiazepine Compounds as Inhibitors of the Src Protein Tyrosine Kinase: Screening of a Combinatorial Library of 1,4-Benzodiazepines
Archives of Biochem. And Biophys.  1999368, 394-400.  
Xu, R.; Greiveldinger, G.; Marenus, L. E.; Cooper, A. G.; Ellman, J. A.
Combinatorial Library Approach to the Development of Synthetic Receptors Targeting Vancomycin Resistant Bacteria
J. Am. Chem. Soc.  199955, 8883-8904.  
Haque, T. S.; Skillman, A. G.; Lee, C. E.; Habashita, H.; Gluzman, I. Y.; Ewing, T. J. A.; Goldberg, D. E.; Kuntz, I. D.; Ellman, J. A.
Single Digit Nanomolar, Low Molecular Weight Non-Peptide Inhibitors of Malarial Aspartyl Protease Plasmepsin II
J. Med. Chem.  199942, 1428-1440.  
Backes, B. J.; Ellman, J. A.
An Alkanesulfonamide “Safety-Catch” Linker for Solid-Phase Synthesis
J. Org. Chem.  199964, 2322-2330.  
Souers, A. J.; Virgilio, A. A.; Rosenquist, A.; Fenuik, W. Ellman, J. A.
Identification of a Potent Heterocyclic Ligand to Somatostatin Receptor Sub-Type 5 by the Synthesis and Screening of beta-Turn Mimetic Libraries
J. Am. Chem. Soc.  1999121, 1817-1825.  
Lee, C. E.; Kick, E. K.; Ellman, J. A.
General Solid-Phase Synthesis Approach to Prepare Mechanism-Based Aspartyl Protease Inhibitor Libraries.  Identification of Potent Cathepsin D Inhibitors
J. Am. Chem. Soc.  1998120, 9735-9748.  
Souers, A. J.; Virgilio, A. A.; Schürer, S. S.; Ellman, J. A.; Vanderslice, P.; Kogan, T. P.
Novel Inhibitors of alpha-4-beta-1 Integrin Receptor Interactions Through Library Synthesis and Screening
Bioorg. Med. Chem. Lett.  19988, 2297-2303.  
Ellman, J. A.; Gallop, M. A.
Combinatorial Chemistry
Curr. Opin. Chem. Biol.  19982, 317-319.  
Woolard, F. X.; Paetsch, J.; Ellman, J. A.
A Silicon Linker for the Direct Loading of Aromatic Compounds onto Solid Supports.  Traceless Synthesis of Pyridyl-Based Tricyclics
J. Org. Chem.  199762, 6102-6103.  
Kick, E. K.; Roe, D. C.; Skillman, A. G.; Liu, G.; Ewing, T. J. A.; Sun, Y.; Kuntz, I. D.; Ellman, J. A.
Structure-Based Design and Combinatorial Chemistry Yield Low Nanomolar Inhibitors of Cathepsin D
Chem. Biol.  19974, 297-309.  
Plunkett, M. J.; Ellman, J. A.
Germanium and Silicon Linking Strategies for Traceless Solid-Phase Synthesis
J. Org. Chem.  199762, 2885-2893.  
Boojamra, C. G.; Burow, K. M.; Thompson, L. A.; Ellman, J. A.
The Solid-Phase Synthesis of 1,4-Benzodiazepine-2,5-diones.  Library Preparation and Demonstration of Synthesis Generality
J. Org. Chem.  199762, 1240-1257.  

Pages